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Abstract

A protocol is described for the transmission of large data packets over unreliable channels. The protocol
splits each data packet and broadcasts it in parts. In case of failure of transmission, only a limited number
of retries is allowed (bounded retransmission), hence the protocol may give up the delivery of a part of the
packet. Both the sending and the receiving client are informed adequately. This protocol is used in one of
Philips’ products.

We used uCRL as formal framework, a combination of process algebra and abstract data types. The
protocol and its external behaviour are specified in uCRL. The correspondence between these is shown
using the proof theory of uCRL. The whole proof of this correspondence has been computer checked
using the proof checker Coq. This provides an example showing that proof checking of realistic protocols
is feasible within the setting of process algebras.

1 Introduction

Background and motivation.  During the last 15 years the state-of-the-art in the description
and analysis of parallel and distributed systems has advanced enormously. Still the field has not
reached a state in which the results are applied frequently and routinely in industry. This situation
is improved by carrying out small scale case studies into existing industrial distributed systems.
The spin-off of these experiments is generally an assessment of the theory and some indications for
further developments of the encountered shortcomings. It is our belief that such hints can steer the
theory towards a situation where it can effectively be used at acceptable cost. Therefore, we have
started to specify and verify instances of simple distributed systems, using process algebra.

Around 1990 it was realised that process algebraic languages [1, 14] lack a sufficiently precise
treatment of data. Up till that moment it seemed sufficient for verification purposes to use standard
data types and the generally accepted common sense knowledge about them. This route had already
been abandoned by developers of specification languages as they had experienced that commonly
accepted data types do not exist (see e.g. [11, 13]). Therefore, abstract data types were added to
process algebra.

Given the additional requirement that specifications in such a language should be suited for han-
dling by computer based tools, the language 4CRL (micro Common Representation Language) was
born. This is a simple, semantically clear and completely formally defined language based on pro-
cess algebra that incorporates data [6]. The next step was to define a proof theory that enabled to
prove distributed systems correct [7]. From this point on #CRL was ready for its usability test. Sev-
eral distributed systems have now been proved correct [2, 3, 5, 12]. These experiments have revealed
several problems. The most important is that proofs contain very many trivial steps. For human be-
ings it is hard to guarantee that all these steps are correct. Therefore, we think it is necessary to
check the correctness proofs with automated proof checkers [15, 16, 12, 2).

Verification of the BRP. The Bounded Retransmission Protocol of Philips is an example of a
distributed system which relies heavily on data. It is a simplified variant of a telecommunication
protocol that is used in one of Philips’ products. The protocol allows to transmit large blocks of data
within a limited amount of time. After transmission it indicates whether delivery was successful
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The key features of the protocol are that data is transferred in small chunks, and that only a limited
number of retransmissions are allowed for each chunk.

The protocol and its external behaviour are specified in uCRL (Sections 2 and 3) and proved
equivalent using the proof system for uCRL (Theorem 4.1). The correctness proof for the BRP is
rather typical, because proof principles of process algebra, abstract data types and inductive argu-
ments cohere in an intricate way. This was one of the motivations for designing xCRL. Instead of
assuming fairness, we exclude possibly diverging internal behaviour by induction on the bounded
number of retries still allowed and the length of the data packet.

The creative part of the proof is to find a suitable system of recursive equations, that has the
protocol as well as the external behaviour among its solutions. This is far from trivial; in Section 4
we explain the intuition behind this system. The desired equivalence then follows from the Recursive
Specification Principle (RSP), which states that a system of guarded equations has a unique solution.
The by far largest part of the proof consists of a proof that the protocol is indeed a solution. This
proof (Section 5) is structured by induction on the number of retries still allowed. Within this
induction, a large amount of purely algebraic manipulations are necessary, using the equations of
process algebra and the axioms of our abstract data types. As we will show, this part lends itself
very naturally to term rewriting and hence to automated proof checking.

Finally, the whole correctness proof has been proof checked using the system Coq [4] along the
lines set out in [15, 16] (see also [2]). This guarantees the highest degree of correctness that can be
reached nowadays. We think that we can safely claim that all lemmas and theorems in this document
are correct and that they can be proved correct using only the axioms mentioned in this document.

In Section 6 we report on this verification process. It is explained which features of Coq were
used, and which missing features would have been helpful. The algebraic part of the verification has
been mechanized. Apart from a rigorous discipline, the verification yields a term rewriting system
to compute the expansion of parallel processes in an optimal way. Large parts of the verification can
be reused for other protocols.

Discussion. The same protocol has been studied in the setting of I/O-automata [10]. Several in-
variants, safety, deadlock freeness and liveness results are proven. Parts of these proofs are machine
checked. A more recent approach can be found in [9). Here an abstract interpretation is given, with
the help of a theorem prover. The abstract protocol, which has a finite state space, could be verified
by a model checker. Our work [8] precedes these two approaches.

We feel that our approach has several merits. The description of the protocol is very compact
(it fits in one page, instead of eleven pages in [9]) and completely formal. Furthermore, we give
a compact, perspicuous and intuitive correctness proof. Finally, the correctness criterion is highly
informative, because the protocol is proved equivalent to a straightforward description, representing
the external behaviour of the protocol. Here equivalence (branching bisimulation) means that there
is no observable difference. Hence a simple process answers all possible questions about the external
behaviour of the protocol (inclusive safety, deadlock freeness). Consequently, any user only needs
to understand this description. This is a real advantage in the common situation that many people
work on the same project, while only a few know about the particularities of the protocol.

Of course, we leave it to the interested reader to judge which approach is mostly suited to his
purposes. The common conclusion is, that a formal specification and analysis of realistic distributed
systems is possible. We amplify this statement for the algebraic approach.

Acknowledgements. Thanks go to Leen Helmink, Alex Sellink, Frits Vaandrager and Thijs Winter
for working on and discussing this protocol. We also thank Doeko Bosscher and Jan Springintveld
for reading a preliminary version of this paper.
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2 Description of External Behaviour of the BRP

As any transmission protocol, the BRP behaves like a buffer, i.e. it reads data from one client, to
be delivered at another one. There are two distinguishing features that make the behaviour much
more complicated than a simple buffer. Firstly, the input is a large data packet (modeled as a list),
which is delivered in small chunks. Secondly, there is a limited amount of time for each chunk to be
delivered, so we cannot guarantee an eventually successful delivery within the given time bound. It
is assumed that either an initial part of the list or the whole list is delivered, so the chunks will not
be garbled or change order. Of course, both the sender and the receiver want an indication whether
the whole list has been delivered successfully or not.

This section ends with a formal description of the external behaviour of the Bounded Retrans-
mission Protocol (BRP) for large data packets. This behaviour is modeled as the process X, defined
by a system of four recursive equations, written in the syntax of 4CRL. Some standard data types are
specified in Appendix A. We first give an informal description of the external behaviour, illustrated
by Figure 1.

sa(d2, I1nc)

s4(d1, IrsT)

Tl(dl,...,d“)

%1(Inok)
s1(Inok)

s1(lok)

34(dn-1,I1nC)

$4(dn, Iok)

Figure 1: External behaviour of the BRP

The input is read on port 1, by the action ry(dy, - - - ,dn). Ideally, (the outer edge of Figure 1)
each d; is delivered on port 4. Each chunk is accompanied by an indication. This indication can be
Irst, Itnc or Iok. Iok is used if d; is the last element of the list. Irgr is used if d; is the first
element of the list and more will follow. All other chunks are accompanied by I;nc.

However, when something goes wrong, a “not OK” indication is sent without datum, s4(Ivox)-
Note that the receiving client doesn’t need a “not OK” indication before delivery of the first chunk,
nor after delivery of the last one. This accounts for the irregularity before d; and after d,, in Figure 1.
The 7-steps indicate that the choice between delivery or loss is decided by internal steps of the
protocol.

The sending client is informed after transmission of the whole list, or when the protocol gives
up. An indication is sent on port 1, s;(c). This indication can be Iok, Inox or Ipx. Afteran Iok
or an Iyok indication, the sender can be sure, that the receiver has the corresponding indication.
A “don’t know” indication Ipyx may occur after delivery of the last-but-one chunk dy-1. This
situation arises, because no realistic implementation can make sure whether the last chunk got lost.
The reason is that information about a successful delivery has to be transported back somehow over
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the same unreliable medium. In case the last acknowledgement fails to come, there is no way to
know whether the last chunk d,, has been delivered or not. This explains the exception after d,—; in
Figure 1. After this indication, the protocol is ready to transmit a subsequent list.

The rest of this section is devoted to the formal description below. The language primitives are:
basic actions (r;(d) and s;(d) stand for read and send datum d over port i, respectively), sequential
composition (x - y, or zy for short), choice over a data type (3_,. z(d)), a then-if-else construction
(z <2b> y) and choice between two processes (x +¥). Furthermore, 7 is a silent step. These operators
are enumerated in order of binding strength (strongest first). See also Table 2 in Appendix B.

In X (corresponding to the leftmost point in Figure 1) some list ! is read, and forwarded to X,
in order to transmit the elements one by one. To inform X3 whether it is sending the first element
of the initial list, it is provided with an extra bit b, which equals e; only if the list is fresh, and eg if
some elements of the initial list have been sent already. X itself is of the form 7z + Ty, where =
and y correspond to loosing or delivering the first element of {. Note that just z + y would mean that
the user could refuse to accept failure and force the protocol to succeed. Always chosing the second
summand of X5 corresponds with the outer edge of Figure 1. Finally, X3 or X} is called, depending
on whether the receiver needs an indication.

The functions Cjng and I;,4 compute the indications for the sending and receiving client, re-
spectively. See Appendix A for the auxiliary function indl, which yields e; for empty and singleton
lists and ey otherwise.

sort Ind
func  Irst, Iok,Inox,Iinc, Ipk = Ind
Cing : List = Ind
I;ng : Bit X Bit = Ind
if : Bool x Ind x Ind — Ind
var 1: List,i;,12 : Ind
rew Cina(l) = if (eq(indl(l),e0), INoKk Ipk)
Lina(eo, &) = Itnc
Lina(eo,e1) = Iok
Lina(e1,€0) = Irsr
Lina(e1,e1) = Iokx
if (tyig,iz) = i1
if (f,i1,12) = 12
act ry : List
81,84 : Ind
$4: D x Ind
proc Xy = ¥pp5,. () Xa(l 1)

Xa(l:List, b:Bit) =
7(X3(Cina(l)) <eg(b,e1)> X4(Cina(l)))
+ 7 84(head(l), Lina(b, indl(l)})
((r Xa(Iox) + 7 X3(Ipk)) <last(l) > (1 Xa(tail(l),e0) + ™ Xs(Inok)))

Xs(c:Ind) = s1(c) X1
Xi(c:Ind) = s1(c) s4(Inok) X1

3 Description of the Protocol

We now describe the protocol itself. It consists of a sender S equipped with atimer T}, and a r?ceiver
R equipped with a timer T that exchange data via two unreliable channels K and L. See Figure 2
and also the defining equations below. ]

The protocol has an intricate timing behaviour. The timers use a new set of signals (T'Comm).
A timer can only signal a time out, if it is set; resetting a timer turns it off. Because we have no
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explicit time in our framework, we could not deal with explicit time bounds. The timers just have
the choice to expire; we only cared about order of actions. Synchronization is enforced by two extra
signals. These signals are los¢ and ready, to be sent over the links 9 and 10. These signals a®e
understood as “elapse of time” and not as physical signals. The dashed lines in Figure 2 indicate
that 9 and 10 don’t model a physical medium.

It would be interesting to describe the protocol using explicit time delays, to be able to verify
that the protocol terminates transmission within the required time bound.

Figure 2: The structure of the BRP.

The sender reads a list at ; and sets the retry counter 7n to 0 (equation S). Then it starts
sending the elements of the list one by one in S;. Timer T} is set (s7(set)) and a frame is sent into
channel K. This frame consists of three bits (ep or e;) and a datum. The first bit indicates whether
the datum is the first element of the list. The second bit indicates whether the datum is the last
item of the list. The third bit is the so-called alternating bit, that is used to guarantee that data is
not duplicated. After having sent the frame, the sender waits (in S,) for an acknowledgement from
the receiver, or for a time out. In case an acknowledgement arrives (rg), the timer T} is reset and
(depending on whether this was the last element of the list) the sending client is informed of correct
transmission, or the next element of the list is sent.

If timer 7} signals a time out, the frame is resent, (after the counter for the number of retries is
incremented and the timer is set again), or the transmission of the list is broken off and timer T is
allowed to expire (s10(ready)). This occurs if the retry counter exceeds its mazimum value.

The receiver (initially equation R) waits for a first frame to arrive. This frame is delivered
(in Ry) at the receiving client, timer T3 is started and an acknowledgement is sent (s5). Then the
receiver simply waits for more frames to arrive (in R;); the value of the alternating bit is stored.

The first bit of R; indicates whether the previous frame was the last element of the list; the
second bit is the expected value of the alternating bit. Each frame is acknowledged, but it is handed
over to the receiving client only if the alternating bit indicates that it is new. In this case timer T is
reset. Note that (only) if the previous frame was the last of the list, then a fresh frame will be the
first of the subsequent list and a repeated frame will still be the last of the old list. This explains the
double reuse of bit b.

This goes on until 7> times out. This happens if for a long time no new frame is received,
indicating that transmission of the list has been given up. The receiving client is informed, provid_ed
the last element of the list has not just been delivered. Note that if transmission of the next list
starts before timer T expires, the alternating bit scheme is simply continued. This scheme is only
interrupted after a failure.

Timer T} times out if an acknowledgement does not arrive “in time” at the sender. It is set w}nen
a frame is sent and reset after this frame has been acknowledged. To avoid that a message arrves
after the timer expires, we let the channels K and L send a signal sg(lost) to T}, indicating that 2
time out may occur. This models the following meta-assumption: the total time to move a datum
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through K, to gene i i
delay.g generate an acknowledgement in R and to transfer this via L is bounded by a fixed

the ::\:;::1-13812101: t();e;slei:zbg the receiver (rg(set)) at the arrival of each new frame. It times out if
do6s ot start readting 5 d2\s been.lqtermpted by thc sender. It is also used to model that the sender
failure. This is neceg;s nd transmitting the next list before the receiver has properly reacted to the
frame would be i ary, because ﬂ.‘lt? receiver has not yet switched its alternating bit, so a new
¢ interpreted as a repetition. The time out (sg(signal)) is preceded by a signal of the

sender (r10(ready)) to make sure that transmission of the current list has come to a standstill, It is
followed by rg(ready) s1o(ready), to prevent the sender from sending a new list too early. '
sort TComm
func  set,reset, signal, ready, lost : TComm
act  r2,83,¢3,83,73,¢3 : Bit x Bit x Bit x D

5, 35,C5,76, 86, Ce

r1,87,C7,78, 88,C8,T9, 89, Cg, 10, 810, C10 : TComm
comm rals2 =C; Tslss=c; rlsr=c7 rolss=co

1'3‘83 =cC3 re|36 =cg 38"'8 =cg 7'10|310 = ¢y
proc K =37, pr.pieap T2(b 6, 0", d) (7 53(b, b, 6", d) + 7 s9(lost)) K

L =r5(736+789(lost)) L

S(b":Bit, maz:N) = ¥y 1,1 (1) $1(h 1, .0, maz)
Sy (l:List, b,b":Bit,rn, maz:N) = s7(set) so(b, indl(l), b", head(l)) Sa(l, 4,5",rn, maz)

Sy(l:List, b, b": Bit,rn, maz:N) =
76 sz(reset) (s1(Iok) S(inv(b"), maz) <last(l) > S, (tail(l), &, inv(¥"), rn, maz))
+ r7(signal) S3(1,5,”, rn,maz, Cina(l))

S3(l:List, b, b": Bit,rn,maz:N, c: Ind) =
s1(c) s10(ready) rio(ready) S(inv(b"),maz) <eq(rn,maz)v> §
+ S51(1,b, 4", s(rn), maz) «lt(rn,maz)v §

Ty = r7(set) (ro(lost) s7(signal) + ry(reset)) Ty
R= Eb'.b”:Bit.d:D 1’3(81, b’a b”: d) R2(b'1 b”,d, Iind(el ) b’))

Ry (b,b":Bit) =
Eb’:Bit.d:D (Ta(b, blv b"1 d) 33(1‘8861) Rﬂ(b’» b”v d, Iimi(bv bl))
+r3(b', b,inv(b"),d) 55 Ry (b,b"))
+ rg(signal) (sa(Inok) ss(ready) R aeq(b, eg) > sg(ready) R)

Ry(¥,b":Bit,d:D, i:Ind) = s4(d, ) ss(set) s5 By (V',inv(b"))

Ty = (r(set) (r1o(ready) ss(signal) rs(ready) s10(ready) + rs(reset))
+ rio(ready) sio(ready)) T

The Bounded Retransmission Protocol for large data packets is obtained by putting these compo-
nents together. To enforce communication, we encapsulate single occurrences of actions in the set
H = {rg, $2,73,83,T5,85,76,86,T7, 57,78, ss,fg,ag,rm,am}. The effect is that e.g. T2 can only occur
simultaneously with s2; the resulting action is called ¢ by the comm-part above. Then the actions
in the set I := {cz,¢3,¢5,C6» ¢7, s, Co, C10} are hidden, to indicate that the communications are inter-
nal. (See [1] for a good explanation of these concepts and cf. Table 3 in Appendix B). BRP is then
specified as the parallel composition of its components, with the actions in H forbidden, and the

actions in I hidden.
proc BRP(maz:N) = 7185(T: || S(eo,maz) | K[| L || R || T3)



542

4 The Correctness Proof

The main result to be established is that the internal and external descriptions of the BRP coincide,
The rest of this section is devoted to a proof of the following theorem, where equality refers to the
theory of uCRL (see Appendix B). Branching bisimulation (a stronger variant of weak bisimulation)
is a model of this theory. The importance of this theorem is that a user of the BRP only needs to
understand the definition of X;. This answers all questions about the BRP, like “What happens when
an empty list is sent?”? Note that the equation even holds when maz = 0 and also when all signals
in TComm: are equal, because it is not specified that they are pairwise different.

Theorem 4.1. For all maz : N we find| X, = BRP(mam).J

The heart of the correctness proof is as usually an application of RSP, which states that every
guarded equation has a unique solution. So a suitable system of recursive equations is needed,
having both the protocol and its external behaviour as a solution. Finding it is the creative step in the
proof. For simple protocols, this system of equations is just the definition of the external behaviour,
or a small variation of it.

In our case, the intermediate system of equations is less straightforward. The intuitive reason is
that the protocol can start transmission of a list in two distinct modes. In the first mode, the receiver
doesn’t know what the toggle bit of the list will be; the receiver is in state R. This mode occurs
after start up of the protocol and after termination due to a failure. The second mode arises after the
successful transmission of a list. In this case, the receiver assumes that the alternating bit sequence
is simply continued; the receiver is in state Ry (ey,b"”), where b” is the expected bit.

First, we define auxiliary processes, denoting the components of the BRP in some non-initial
state:

K'(b,0',b",d) := (1 s3(b,V',b",d) + 7 s9(lost)) K

L' := (736 + 7 s9(lost)) L

T4 = (rio(ready) ss(signal) rg(ready) sio(ready) + ra(reset)) Tz
T} := (ro(lost) s7(signal) + r7(reset)) Ty

In the set of equations (I) below, Z; and Z} denote the two major modes described above.
Zy, ..., ZY are inspired by Xs,..., X4 of the external behaviour, but the two modes are kept dis-
tinct. These equations can be read as the definition of processes Z1, ..., Zy.

Zy(b"\maz) = Ty 11(Y) 7100 (Ty || S (1, €1,6",0,maz) | K || L || R|| T2)
Z{(b",maz) = Ly iy 11 (D) 7105 (To || S1(1, €1,0",0,maz) || K || L || Ra(er,d") || T3)

Zo(L, 4", maz) =
(7 Z4(Ipk, ", max) + 7 Z5(1,b", maz))
alast(l)>
(T Z4(INOK’ b"‘) maz)
+ 7 s4(head(l), IrsT) (T Z5(tail(l), e, inv(b"), maz) + 7 Z{ (INnox, b", maz)))

(l) Zé(l, bw b”y ma:z:) =
(7 (Zs(IpKk,b",maz) aeq(b,er)> Z; (Ipk,b’,maz)) + 7 Z3(1,b", maxz))
<last(l)>
(1(Z4(INoK,b", maz) <eq(b,e1) > Zy (Inok, b, maz))
+ 7 ss(head(l), Lina(b, e0)) (T Z4(tail(l), e0, inv(b"), maz) + 7 Z§ (Inok, b", maz)))

Z3(1,5",maz) = s4(head(l), Iok ) (T Z4(Tok, b",maz) + 7 Z4(Ipk,b",max))

2In this case one element is delivered, namely head(empty).
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Z4(c,b", maz) = s,(c) Z, (inv(b"), maz)
Zé’(c, b,:’,’ maz) = 8, (c) Z{(inv(b"), maz)
Z{(c, V", maz) = s,(c) s4(Inok) Z, (inv(b"), maz)

At this pf)im we need a large number of straightforward calculations, which are postponed to
the next sectnfm for expository reasons. Using Lemma 5.1.17 and 5.1.18 (and axioms AS and B1
from Appendix B), we get the following equalities:

Zy(8",maz) = Ty 1100 r1(1) Zo(l, b, maz)
Z1(b",maz) = 3y 15 m1(l) Z5(1, €1,5", maz)

T'!'le set of eguations (II) is obtained, by replacing the first two equations in (I) by these two
equat'lons. (Il) is clearly guarded, so by RSP it has a unique solution. Clearly, Zy,...,2{ is a
solution of (II). “Another” solution is found by applying the following substitution of (II). This can

easily be verified from the equations defining X,. .., X4 (use a case distinction on last(l) for the
equations with X5).

X, for Z,(b", maz) and Z} (b, max)

Xso(l,e1)  for Zy(1,b", maz)

Xa(l,b)  for Z4(1,b,8" ,maxz)

sa(head(l), Iok) (7 X3(Iok) + 7 X3(Ipk)) for Z3(1,b", maz)
Xs(c) for Zy(c,b",maz) and Z}(c, b, maz)

Xa(e) for Z{(c,b", maz)

All solutions are equal, so Z)(b",maz) = X;. By Lemma 5.1.1 and the defining equation of
BRP(maz) we find that BRP(maz) = Z1(eg, max). These two results imply the theorem. &

5 Algebraic Calculations

In this section we give the calculations that were needed in the correctness proof. All calculations
fall within the proof theory developed in 7] including the branching 7-laws mentioned in [1].

Lemma 5.1 establishes the link between the Z;, defined in the process equations (1) and the BRP
protocol. The goals are item 17 and 18; all other items are needed in the proof. The proof is in
fact by unfolding the equations. Although usually recursive equations specify infinite processes, we
use the fact that for given maz, rn and I, the equations in (I) contain no infinite loop. Eventually,
we end up in Z; or Z}. The proof proceeds by induction on the number of retries still allowed
(minus(maz,rn)) and on list l.

Lemma 5.1. For all b,5,b", 4" : Bit, maz,n : N, i,c : Ind withlt(rn, maz) or eg(rn,maz), we
find
1. Z,(b",maz) = 1105(T1 | S(b",maz) | K| L|| R|| T2)
Z!(b",maz) = 70 (Ty || S(t",maz) | K || L] Rules,t") | T3)
Z4(c, ¥, maz) = 710 (Th || S3(1,b,b",maz,maz,c) | K| LI R I T2)
Z(c, v, maz) = 70 (T1 || S3(1,5,0",maz, maz,c) | K Il L1l Rufeo, ") | T2)
Z4(c, ¥, maz) = 7r0u(Th || S3(1,b,b", maz,maz,c) || K I L }} Ru(er, ") || T2)
Zi(c,v", maz) = 710x(T || 81(c) S(inv(b"), maz) I K | L} Ry(ey,ine(®") | T2)

last(l) =f - )+ 7 20 Unor. b maz))
T (r ZL(tail(l), eo, inv(b"), maz) + 7 Z{(INoK, D", ML)} =
27 7185(T! || S2(1,b,b",rn,maz) | K | L' | Ry (e, inu(b")) || T2)

N o ke
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8. last(l) =t -
7 (1 Zi(Iok,b",maz) + 7 Z4(IpK,b", maz)) =
7185 (T] || S2(1,5,6",rn,maz) || K || L' || Ri(er,inv(d")) || T3)
9. last(l) =t —
Z3(l,b”, maz) = TIaH(Tll " S2(l»b7 buirn? maz) ” K " L ” R, (indl(l),b”, head(’)slolf) "T2)
10. last(l) =t =
7(r Z4(Iok,b",maz) + 7 Z4(Ipk , b, maz)) =
77105 (T} || S2(l,0,b",rn,maz) || K'(b,indl(l),b", head(l)) || L || Ry(eyr,inv(b")) || T3)
11 last(l) =t —
7 (1 Z4(Iok, b",max) + 7 Z4(Ipk,b", maz)) =
10r(Ty || $1(L, 0,8, rn,maz) || K || L || Ri(er,inv(b")) || T3)
12. last(l) =f —
s4(d, 1) (T Z4(tail(l), e, inv(b"), maz) + 7 Z{ (Inok, b, maz)) =
718 (T{ || S2(1,b,5",7n,maz) || K || L || R2(eo, b",d,%) || T2)
13. last(l) =f =
(7 Zh(tail(l), €0, inv(b"), maz) + 7 Z{ (Inok, b",maz)) =
7110g(T} || S2(L, b,b",rn,maz) || K’(b,indl(l),b", head(l)) || L || Ry(eq,inv(b")) | T3)
14. last(l) =f >
(7 Z4(tail(l), eq, inv(b”), maz) + 7 Z{ (INok, b’ ,maz)) =
7105(Ty || S1(1,b,b",rn,maz) || K || L || Ri(eo, inv(b")) || T3)
15. 7 Zo(1,b", maz) = 71185 (T! || Sa(l,e1,b", 7, maz) | K'(ey,indl(l), 5", head(D)) || L || R|| T2)
16. 7 Z4(1,b,b", maz) =
T71108(T} || S2(1,b,b",rn,maz) || K'(b,indl(l),b", head(l)) || L {| R1(b,b") || T3)
17. 7 Z5(L,4",maz) = 118x(Ty || S1(l,e1,0",rn,maz) | K || L|| R|| T2)
18. 7 Z3(1,b,8",maz) = 7718 (Ty || S1(1,b,8",rn,maz) || K || L || Ry(b,8") || T3)

Proof. In each step, the parallel processes at the right hand side have to be expanded, to see what
steps they can perform. These expansions have been omitted, as they are completely standard. We
only show how the inductive proof is structured, and which facts are used.

1,2 Straightforward expansion.
3,4,5 After an expansion, use 1.
6 After an expansion, use 2.

8,10,11 Simultaneous induction on minus(maz,rn), the number of retransmissions still allowed.
For fixed maz and rn, 11 is a consequence of 10. For the base case, first prove 8, using 5 and
6; this together with 5 is used for 10. For the step case, 8 uses 6 and the induction hypothesis
for 11; 10 uses the just obtained result for 8, and the induction hypothesis for 11.

9 Use8.

7,12,13,14,16,18 First, for fixed maz,rn and I, 7 = 12, 13 = 14 and 16 => 18 can be seen by
expansions only. The proof proceeds by simultaneous induction on minus(rn, maz) and
within that to the list [. If | = empty, then 7 and 13 are vacuously true, because then
last(empty) = t. For rn = maz, 7 implies 16. To see this, we need 4 or 5 (depending
on bit b) and 9 or 12 (depending on last(l)).

Case 0, add. For 7, use 4 and the innermost induction hypothesis of 18. This, together with
4 is used for 13.
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Case s, empty. In this case, 16 can be proved with the help of 9, and the outer induction
hypothesis for 18,

Case s, add. 7 uses the outer induction hypothesis of 14 and the inner induction hypothesis
of 18. T:hlS instance of 7, together with the outer induction hypothesis of 14 is used
to establish the induction step for 13. For 16, the outer induction hypothesis for 18 is

used, and either 9 or 12 (which holds, because 7 has just been established), depending
on last(l).

15,17 By simultaneous induction on minus(maz,rn). First note that for fixed maxr and rn, 15

implies 17. The base case of 15 uses 3; the step case uses the induction hypothesis of 17.
Furthermore, both cases use 9 or 12, depending on whether last(l) holds or not. 8

6 Mechanical Proof Checking using Coq V5.8.2

About Coq. The verification of the correctness proof has been carried out in the theorem prover
Coq V5.8.2 [4]. This system is designed as a proof checker and is not an automated theorem
prover. The user can enter tactics (called vernacular code), which enable Coq to reproduce the proof.
These tactics allow to introduce and unfold definitions, to apply previously proved theorems, to use
(directed) equations and to perform induction. Moreover, such tactics can be combined by tacticals,
like Repeat and Orelse. With the help of these tacticals, simple predicates (e.g. membership of
lists) can be mechanized, and also a term rewriting system can be implemented within Coq.

Coq’s logic is based on a powerful type theory, known as the Calculus of Inductive Constructions
(i.e. higher order arithmetic). The main advantage of this strong theory is that all concepts can be
defined without encoding. Although the largest part of the proof uses only first order equational
logic, we benefited from Coq’s expressive power. We used polymorphism to formulate schematic
rules (like induction rules and RSP) as single rules. Note also that RSP quantifies over process
operators (modeling the right hand of a recursive equation), which take a parametrized process
X (d) as argument, which in tumn takes a first order datum as argument. So the RSP axiom is a fourth
order object in Coq.

Reusable part of the verification. We refer to [15] for a detailed explanation how the syntax,
axioms and rules of pCRL can be incorporated in Coq. We reused vernacular code from [2] for a ot
of standard facts of process algebra. The files with vernacular commands are available and can be
obtained by contacting the second author. o

Recursive processes are defined by adding a constant for the process and puttin_g the dehn{ng
equation as an axiom. This is in fact a hidden appeal to the Recursive Definition Principle, which
says that each equation has at least one solution.

. ires a large number of elementary calculations, we have automatized

the ?:r;;t:]s;ﬁlng?&: ;xr;z:l:slir:n of :Ijagxallcl processes. Lemma 5.1.1 for instance needs the follow-
ing equality:

S () 110a(T1 [1S1(1 e, ", 0,maz) | K I LI R] Ty) = 78u(Th || S(6", maz) | K [L [ R T2).
l:List

which can be proved by expanding the right hand side once (i.e. by loo_king yvhich steps this term
can perform). By CM1, each pair z,y of the 6 processes put in pamllFl, gwes rise to three §cenar}os.
either z or y performs a first step, or they synchronize into a communication. Thc Handshaklflg axiom
tells that at most two processes can synchronize. Hence, there are]36 scenarios to be considered (6
X R o ial blow up.
single steps, and 5 - 6 = 30 combinations), indicating a potf:nn

gHowe‘:/er, the left hand side shows that only one scenaro really occurs, namely S may perfqrm

a 1 (1) step for some I. All other single steps are encapsulated by the dy. Furthermore, immediate
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synchronizations are forbidden by the comm part in Section 3. In this way, the equality above can
be proved by applying equations only.

We succeeded to mechanize these parts of the proof almost completely. To this end a term
rewriting system was identified that computes the expansions. With outermost rewriting, the poten-
tial blow up is avoided, because the 36 scenarios are not generated at once. Before a new scenario
is generated, it is tried to eliminate the old one by encapsulation and excluding synchronization. In
vernacular code, the proof of the equation above has the following form: (certain details are replaced
by...)

Goal (b’’:Bit)(max:Nat)<proc>
(sum List [1:List] (seq (ia List rl 1) (hide IL (enc HL

(mer T1 (mer (S1 1 el b’’ o max) (mer K (mer L (mer R T2)))))))))
=(hide IL (enc HL

(mer T1 (mer (S b’’ max) (mer K (mer L (mer R T2))))))).
Intros.
Pattern 2 T1; Rewrite <- hnf_Ti. Rewrite <- Proc_S. ...
Load exp._tac.
Rewrite -> hnf_T1; Rewrite -> Proc_S; ...
Revrite <~ S_Lmer.
Load hide_strip.
Load equal_tac.
Save Exp_1.

First the equation is stated as a goal. Then we unfold the definitions of the processes in the right
hand side. Now the term rewriting system is called (it is stored in the file exp_tac). The process
definitions are folded back. At this point we need an auxiliary lemma, called S_Lmer. Finally, we
compute the result of hiding, and call the tactic equal.tac, which compares left and right hand side
modulo associativity and commutativity. The proof is stored as Exp_1.

Lacking features of Coq. Unfortunately, we could not mechanize all parts of the algebraic compu-
tation. In the example above, we used a lemma (S_Lmer) and we had to specify which abbreviations
to unfold. A full mechanization of the algebraic part would be desirable. First of all, this saves a
lot of time. More importantly, unmechanized parts of the proof are very sensitive to small changes.
After the first verification, we made some changes in the protocol. This only invalidated parts of the
proof, where mechanization had not been successful (e.g. the proof of lemma S_Lmer).

Below we identify some features that would enable us to complete the mechanization. These
features are currently lacking in the Coq system.

® Metavariables. We had to compute the left hand side of the Goal above ourselves, before
entering it. Ideally, one would type a metavariable for the left hand side. With a metavariable
we mean a temporary unknown part of the proof. After the computation of the expansion,
the theorem prover knows the value of the metavariable and can instantiate it accordingly. A
metavariable could also be generated during the application of a theorem, whose premises
contain variables that are not present in the conclusion (e.g. transitivity). This variable could
get its value in the next proof step. Coq refuses such applications.

o Full second order matching is needed for instance in the application of SUM3 (Table 2) from
right to left. In the current version, the user has to specify p and e, preventing the use of a
general tactic.

o Definition unfolding mechanism. In the example above, definitions have to be unfoldeq (and
refolded) by hand. Especially the Pattern construct is very sensitive to small changes in the
formulae.
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. Fxtensible vernacular language. This has been added to Cogq 5.10. It allows to add for
Instance a term rewriter as a common vernacular command.

Specific part of the verification. We will not fully discuss the part of the verification that is
specific to this protocol. We only mention two deviations of the proof in the previous sections.
The first deviation is, that we didn’t use RSP in the way indicated in Section 4. Instead of this,
we encoded the system of recursive equations as one single recursive equation. This simplifies the
formulation of RSP considerably.

The second deviation is that we implemented the sorts N, Bit, List and Bool as inductive sets,
instead of as abstract data types. Functions on these sets have been defined with primitive recursion.
The division between free constructors and functions was done by hand. In order to check that these
definitions coincide with the algebraic specification, the equalities in the specification were proved
with induction. Note that the proof theory of uCRL already incorporates induction. See also [16].

This approach is advantageous, as Coq highly supports induction and primitive recursion over
inductively defined sets. Furthermore, equality between terms of these sorts coincides with Coq’s
meta-equality, and can be checked by the system immediately. For the other sorts (D, TComm, Ind)
this approach was not possible, because the free constructors of them are not given.

We give some statistics, in order to show which fraction of the vernacular code can be reused.
The total amount of vernacular code is about 123 Kb, divided over 4367 lines. 1172 lines comprise
the definitions of 4CRL prove the standard facts and set up the term rewriting system; these are
reusable for other protocols. The definition of the protocol requires 468 lines (228 to specify ac-
tions, 240 for protocol and behaviour). Specification and proofs regarding data took 497 lines. For
Lemma 5.1 we used 1706 lines (311 for auxiliary lemmas, 548 lines for the expansions and 847 lines
for the inductive argumentation). The main proof needed 524 lines of code (mainly for the encoding
of the system of equations into one equation). A Sparc Station 10-514 needed 11 hours to interpret
these vernacular commands and to generate a concrete proof term; this proof term is about 1S Mb
large.

Appendix A Standard Data Types

Standard data types used in the BRP are described in Table 1. The functions are fully self explaining.
No other facts about data types have been used in the correctness proof of the BRP than those that
are mentioned in the main text and in this appendix. Some of the functions, such as A, pred and
minus have neither been used in the description of the external behaviour nor in the description of
the BRP itself, but were instrumental in the correctness proof. We also used the usx%al rules for first
order predicate logic with equality. Finally, the following induction schemata were incorporated.

P(eg) P(e1) P(t) P(f) P(0) Vz:NP(z) = P(s(x))
Ve:Bit P(e) Vb:Bool P(b) Vz:N P(z)
P(empty)  Vd:DVl:List P(l) = P(add(d,1))
Vi:List P(l)

Appendix B Axioms of uCRL

All the process algebra axioms used to prove the BRP can be found in Table 2-5. These axioms
form the basic theory that has been provided to the theorem prover Coq. \}’e do not explzun [;he
axioms (see [1, 7]) but only include them to give an exact and cc?mplct.e overview of T‘? a.xxon.\sd bm
we used. The axiom SC4 is a direct consequence of SC3 and Handshaking. Axu?m CD2is lx-npllc y
CD! and SC3. Furthermore, the y-function is defined as follo‘ws: v{a,b) = cif and only if a]b = ¢
or bla = ¢ occur in the comm part of the specification in Section 3.
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Besides the axioms we have used the RSP principle, saying that guarded recursive equations
have at most one solution. In the following z, y denote parametrized processes that can be applied
to a data parameter d of arbitrary sort D, and deliver a process. The symbol W is a process operator,

i.e. a process which is parametrized with a process z(d) and a datum element d. It models the right
hand side of a recursive equation.

¥ is guarded Vd:D.z(d) = ¥(z,d) Vd:D.y(d)
Vd : D.z(d) = y(d)

In the correctness proof in this paper we have used a strong notion of guardedness, namely: for
guarded processes p’ and p”, an arbitrary process g, boolean term b and action a(d), the following

RSP = ‘I’(y,d)_

processes are guarded: a(d), 4, 7,p’' +p", p' abop”, T 4.ppP'(d), a(d) g and 7 p'.

sort Bool sort Bit
func f,t:— Bool func eg,e; :— Bit
A : Bool x Bool — Bool inv : Bit — Bit
var b:Bool if : Bool x Bit x Bit — Bit
rew tAb=b eq : Bit x Bit — Bool
fAb=f var b,by, b : Bit
rew inv(e) =e;
sort D, List inv(e,) = e
func dy:— D if(t, bl,bz) =b
if :Boolx DxD —+ D if (f, by, b2) = b
quDxD—)BOOl if(eq(blybz)wblyb?) =
empty :— List eq(b,inv(b)) =f
add: D x List — List eq(b,b) =t
head : List -+ D
tail : List — List sort N
last : List = Bool func 0:—» N
indl : List - Bit s,pred: N N
var d,dy,dy:= D eq: N x N - Bool
l:— List It : Nx N - Bool
rew head(empty) = minus: Nx N—= N
head(add(d,l)) =d var n,n;,ng:— N
tail(empty) = empty rew €q(0,0) =t
tail(add(d,1)) =1 eq(0,s(n)) =f
last(empty) =t eq(s(n),0) =f
last(add(d, empty)) =t eq(s(n1), s(n2)) = eq(ny,n2)
last(add(dy, add(dy,1))) = f 1t(0,s(n)) =t
indl(empty) = e; lt(n 0)=f
indl(add(d,empty)) = e, 1t(s(m), 8(712)) = lt(ny,ng)
indl(add(d,, add(ds,1))) = eg pred(0) =
’if(t, d],dz) =d pred(s(n)) =n
if (f,dy,dy) = da minus(n,0) =
eq(d,d) =t minus(n, (ng)) pred(minus(ny, nz))
if (eq(d1,dz2),d1, d2) = d2

Table 1: Specification of standard data types used in the BRP
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Al zty=y+z SUMI Tgpz=z
PSS A SUM3  Zup p(d) = Sap pld) + ple)
TTE=2 SUM4  Tup(p(d) +¢(d)) = Su.p p(d) + T q(d)
A4 (z4y)-z=c 24y -z SUMS  S4p(p(d)- z) = (Su.p p(d)) - x
PR AR SUMIL (¥ p(d) = (d)) B p(d) = S d)
Booll —|(t = f)
Bool2 -(b=t)=b=f
Bl =z Ct zatoy=2z
B2 (T (z+y)+z)=z2-(z+y) | C2 zafpy=y
Table 2: pCRL axioms
SUM6  Zap(p(d) | ) = (Zup p(d) L 2 Ya,b)(d) ifd=eand
SUM7  Sap(p(d)lz) = (Sepp(d)lz | CF  a(d)lb(e) = { 7(a,b) defined
SUM8  Zup(9u(p(d))) = 8u(Ta.p p(d)) 5 otherwise
SUMS  Zup(71(p(d))) = 71(Eap p(d))
SUM10 Xup(pr(p(d)) = pr(Zap p(d)) | CD1 bz =4
CD2 z|d=4
CM1 zly=zly+ylz+zly CTl rjz=94
CM2 clz=cz CT2 zjr=4
CM3 crxlly=c(z|y)
CM4 (z+y)llz=z|lz+yl= DD 8x(d) =
CMs5 cz|d =(dc')z DT Ou(r)=T71
CM6 ¢z =(cc)x Dt 9xl(a(d)) = a(d) ifag H
CM7  czld-y = (c|c)(z || y) D2 Oyla(d) =4 ifae H
CM8  (z+y)lz==z|z +ylz D3 du(z+y) = ul(x) +Bu(y)
CM9  zl(y+2) =zly +zl2 D4 dn(z-y) = Oulz)-Bnly)
Table 3: Primary pCRL axioms
TID 7(6)=$ SCl ) =(=zlwl=
TIT 7(r)=r1 sC2 zjé=2x8
Tl 7(a(d)) = a(d) ifagl SC3 zly=ylz
T2 7(a(d) =T ifael sc4 (zlylz=zx]lylz)
T3 n(z+y)—n(a:)+n( ) SCs (zlyl== r fwil=)
T4 71(zy) = T(z)71(y) Handshaking (z|y)|z=4¢

Table 4: Secondary uCRL axioms

Table 5: Standard Concurrency and Handshaking
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